Output files¶
While some information of a run is written into STDOUT
to monitor its
progress, most outputs are printed into dedicated files identified by the chosen
TAG extension. These files can be parsed and analysed using the
python classes. The following pages describe the content
and the structure of the different type of output files:
Most of the information found in
STDOUT
is also written to the log-file called log.TAG. In addition, this file contains all input parameters, truncation, information on other output files, and some results like the time averaged energies (when l_average=.true.).There are several ascii files that contain the time-evolution of integrated quantities (energies, heat fluxes, rotation rate, Reynolds numbers, etc.) that are systematically produced:
Kinetic energies: e_kin.TAG,
Magnetic energies: e_mag_oc.TAG and e_mag_ic.TAG,
Rotation rates: rot.TAG,
Informations about the dipolar component of the magnetic field: dipole.TAG,
Diagnostic parameters (Reynolds, Elsasser, etc.): par.TAG,
There are additional conditional time series that contain the time-evolution of other physical quantities that depend on the chosen input parameters:
Angular momentum balance: AM.TAG,
Heat transport: heat.TAG,
Helicity: helicity.TAG,
Square velocities: u_square.TAG,
Drift rates: drift[V|B][D|Q].TAG and iner[P|T].TAG,
Torques: SR[IC|MA].TAG,
Geostrophy: geos.TAG,
RMS calculations of the force balances: dtVrms.TAG and dtBrms.TAG,
Kinetic energies perpendicular and parallel to the rotation axis: perpPar.TAG.
Time-averaged radial profiles:
Kinetic energies: eKinR.TAG,
Magnetic energies: eMagR.TAG,
Diagnostic quantities: parR.TAG,
Power budget: powerR.TAG,
Average temperature, entropy and pressure: heatR.TAG,
Heat fluxes: fluxesR.TAG,
Temperature and horizontal velocities: bLayersR.TAG,
Kinetic energies perpendicular and parallel to the rotation axis: perpParR.TAG.
Radial profiles of the transport properties of the reference state (those files will only be produced when the appropriate input option is chosen):
Temperature, density and gravity: anel.TAG,
Electrical conductivity: varCond.TAG,
Thermal conductivity: varDiff.TAG,
Kinematic viscosity: varVisc.TAG,
Mapping of the Chebyshev grid: rNM.TAG.
Kinetic energy, magnetic energy and temperature/entropy spectra:
Kinetic energy: kin_spec_#.TAG,
Magnetic energy: kin_spec_#.TAG,
Velocity square: u2_spec_#.TAG,
Temperature/entropy: T_spec_#.TAG,
Time-averaged kinetic energy: kin_spec_ave.TAG,
Time-averaged magnetic energy: mag_spec_ave.TAG,
Time-averaged temperature/entropy: T_spec_ave.TAG,
2-D ([r,ell] and [r,m]) spectra: 2D_[mag|kin]_spec_#.TAG.
Time-averaged 2-D ([r,ell] and [r,m]) spectra: 2D_[mag|kin]_spec_ave.TAG.
Output snapshot that contains the 3-D components of the velocity field, the magnetic field and the temperature/entropy. Those files are named graphic files G_#.TAG (or G_ave.TAG for its time-averaged counterpart).
Time evolution of some chosen fields. Those files are named movie files: *_mov.TAG.
Checkpoints outputs that will allow the code to restart. Those files are named restart files: checkpoint_end.TAG.
Time-evolution of the poloidal and toroidal coefficients at different depths:
Time evolution of the poloidal magnetic field at the CMB: B_coeff_cmb.TAG,
Time evolution of the potentials at several depths: [V|T|B]_coeff_r#.TAG
Additional specific outputs:
Torsional oscillations (see here),
Potential files: V_lmr_#.TAG, B_lmr_#.TAG and T_lmr_#.TAG,
Magnetic spectra for various radii: rB[r|p]Spec.TAG.